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Introduction
Currently, artificial intelligence technology has deeply penetrated the music industry, becoming the core driving force

behind its transformation. Advanced technologies based on machine learning, big data analysis, and intelligent algorithms have
enabled AI to achieve technological breakthroughs and paradigm innovations in the entire music industry chain, from creation
to production and performance. In the core aspect of music production—music audio mixing—AI technology is fundamentally
reshaping traditional mixing processes and structural paradigms, demonstrating a significant trend of technological substitution.
The mixing process in traditional music production demands a rigorous professional knowledge system and extensive

practical experience from practitioners, setting high technical barriers that hinder non-professional involvement. Analyzing
from the operational flow perspective, traditional mixing tasks suffer from efficiency bottlenecks. Moreover, audio engineers
must go through multiple rounds of parameter adjustments and auditory feedback loops to approach the optimal mixing effect.
This experience-driven work model is labor-intensive, which is not conducive to industry resource integration and sustainable
development.
This study systematically reviews the theoretical framework, tool ecosystem, user adoption, and evolutionary trends of AI

mixing technology, revealing its dialectical development characteristics in the field of research. Empirical studies show that
while current technical solutions have effectively lowered the entry barrier for non-professional users, they have yet to fully
meet the precise control requirements of professional production scenarios. Meanwhile, with the iterative upgrades of deep
learning, genetic algorithms, and generative adversarial networks, future AI mixing systems are expected to achieve a
synergistic optimization of production efficiency and music quality, ensuring human artistic creativity remains dominant.

The rise and research dynamics of intelligent mixing
The rise of smart mixing
Breakthroughs in artificial intelligence technology, especially structural innovations in deep learning, are revolutionizing the

paradigms of audio signal processing and music cognition analysis. The evolution of intelligent mixing algorithms has opened
new avenues for overcoming traditional mixing technical bottlenecks. By building an intelligent algorithm system, the system
can achieve multi-dimensional spectral feature analysis and layered musical element recognition, and implement mixing based
on optimized parameters generated by machine learning models. This model architecture not only optimizes the audio
processing workflow but also constructs an intelligent mixing "interface" for non-professional users, laying the technical
foundation for achieving professional-level music output and knowledge transfer in mixing technology.
Since the introduction of the first automatic microphone mixer (Dugan, 1975), both academia and industry have developed

numerous intelligent systems aimed at automating mixing engineering tasks. These systems primarily focus on four core tasks
in professional audio processing: multi-channel level balance optimization, cross-channel signal panning adjustment, dynamic
range compression control, and frequency domain equalization correction.
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Research trends in intelligent mixing
Semi-intelligent rule-based mixing technology

In the 1970s and 1980s, the development of DSP technology laid the foundation for audio analysis and processing (such as
Fourier transforms and filtering algorithms). In the 1990s, rule-based audio processing software emerged (like "smart
equalizers"), primarily relying on preset rules rather than true intelligent technology. Using music tags and audio samples as
input data, it analyzes EQ, levels, and compression, providing a reference for optimizing mixing effects (Man & Reiss, 2013).
The ASP (Answer Set Programming) system focuses on volume, imaging, and equalization in stereo mixing, partially
intelligentizing the multi-track mixing process, offering a structured starting point for mix engineers to further precisely adjust
parameters in digital audio workstations (DAWs) (Eiter et al., 2009).

Intelligent neural network mixing technology

In recent years, as neural network technology has matured, it has driven the intelligent development of music generation and
post-mixing. (Martinez-Ramirez et al., 2022) Delved into deep learning methods for intelligent music mixing and their
optimization issues, proposing innovative solutions. Specifically, these solutions involve retraining supervised deep learning
models with "out-of-domain data" data (such as processed wet sound mixing tracks), which enhances model performance.
Additionally, the subjective listening test method designed by the researcher further validates that this model offers significant
advantages over existing technologies in terms of automatic mixing quality.

graph 2-1 The intelligent mixing model of Martinez-Ramirez(Martínez-Ramírez et al., 2022)

(Van Houdt et al., 2020) adopted time-expanding convolution (TCN) and bidirectional long short-term memory (BLSTM)
network layers to learn and construct a composite mask, which finely adjusts the frequency and amplitude dynamics of audio
signals. In the synthesis phase, this mask is applied to the frequency channel, followed by further fine-tuning through a
squeeze-excitation (SE) module to achieve precise control over gain and frequency shift. Finally, the audio signal is
reconstructed via transposed convolution operations, generating the desired stereo track.
Long Short-Term Memory Network(LSTM) can effectively alleviate the issues of gradient explosion and gradient

disappearance. However, their inherent sequential recursive structure significantly increases computational complexity, leading
to performance degradation when dealing with long sequence dependencies. Limited by model depth constraints, they are
prone to gradient anomalies and overfitting, making it difficult to construct deep networks effectively. This study builds on the
generative adversarial network (GAN) architecture by integrating a TFR module into the generator, constructing an intelligent
mixing model with global perception capabilities.

Method
Gans architecture principles
The original Gans (Goodfellow et al, 2014) model architecture consists of a generator (Generator, abbreviated as G) and a

discriminator (Discriminator, abbreviated as D), both of which are multi-layer perceptron (Multilayer Perceptron, abbreviated
as MLP) structures derived from the theory of great and small games. Its value function is:

The generator G is given a random noise vector, and the multi-layer perceptron MLP is used to generate fake data, with the
goal of deceiving the discriminator. The discriminator D is given real data and generated data, and the probability value is
output through the MLP to judge the confidence degree of the authenticity of the data, with the goal of distinguishing between
the two.
To fit the target data G(Z), given the prior distribution pz(z) of the input noise variable Z, a differentiable function G(z; θg)

maps this noise variable to the data space. Here, G represents a multi-layer perceptron, and θg is the set of parameters for this
perceptron. At the same time, another multi-layer perceptron D(x; θd) is constructed with input variable X, where D(x)
indicates the probability that the data X comes from the real data distribution rather than being generated by the generator G.
During training, the discriminator D's objective is to maximize the accuracy in distinguishing between real and fake data, i.e.,
maximizing logD(x). Conversely, the generator G's objective is to minimize log(1-D(G(z))), meaning the generator aims to
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produce data that can mislead the discriminator D, gradually approaching the true data distribution so that the discriminator
incorrectly identifies the generated data as real. In other words, the generator and discriminator form a two-player minimax
game (Two-Player Minimax Game), competing against each other. When they reach a Nash equilibrium (Nash Equilibrium),
where the output probability logD(x) = 0.5, it represents the optimal solution of the minimax game, with G generating the
current optimal data distribution, and D unable to distinguish the authenticity of the generated data, placing both G and D in a
balanced state.

graph 3-1 Generative Adversarial Network

Transformer Architecture principles
Transformer Model architecture (Vaswani et al., 2023) was proposed by Vaswani et al. in 2017. The core idea is to realize

the global dependency modeling of sequence data through self-attention mechanism, which breaks through the local or
sequential processing limitations of traditional recurrent neural network (RNN) and convolutional neural network (CNN).
The model consists of a stack of encoders and decoders: the encoder converts input sequences (such as text) into high-

dimensional context representations through multi-head self-attention layers and feedforward neural networks (FFNs), where
the self-attention mechanism maps input vectors to Query, Key, and Value matrices, calculating the relevance weights between
elements (the weighted sum of Values after Softmax normalization) to capture semantic relationships at any distance; the
decoder introduces a mask mechanism based on self-attention (to shield future position information and prevent training
leakage) and fuses global information from the source sequence through encoder-decoder attention layers, gradually generating
the target sequence. To address the model's insensitivity to position, Transformer injects positional encodings (Positional
Encoding) into the input embeddings using sine/cosine functions or learnable embedding vectors, explicitly encoding sequence
order; each sub-layer (self-attention, FFN) is followed by residual connections and layer normalization to mitigate gradient
disappearance and accelerate convergence.

graph 3-2 The Transformer - model architecture(Vaswani et al. 2017)

The design advantages of the Transformer model architecture lie in fully parallel computing (no need to rely on sequence
history), efficient modeling of long-distance dependencies, and powerful representation capabilities brought by modular
stacking. It has become the cornerstone of pre-trained models such as BERT and GPT, and has been extended to multi-modal
fields like computer vision (ViT) and speech, establishing a general architectural paradigm for modern sequence modeling.

TFR-Gans architecture model
This study's TFR-Gans model architecture is an improvement on the original Gans model. Using the TFR model as the

generator, the introduction of conditional variables not only enhances sample diversity but also improves the model's
adaptability to specific tasks, making the generated content more targeted and practical. The multi-head self-attention
mechanism in TFR enables the model to capture complex relationships between data more accurately, thus improving
generation quality. At the same time, combining adversarial training with Gans effectively balances the interaction between the
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generator and discriminator, further optimizing model performance. The improved TFR-Gans architecture achieves deep
learning through mixed music audio files, obtaining training parameters for each element in the data. This theoretically allows
for a more precise capture of the acoustic characteristics of audio files, providing the possibility for high-quality, fully
intelligent music mixing.

The theoretical basis and network structure of TFR-G
Theoretical basis of TFR-GTFR

The architecture was initially designed to process text data, and audio files cannot be directly input into the TFR architecture
model; thus, the issue of input format conversion needs to be addressed. Currently, successful examples include the wav2vec
2.0 architecture model (Baevski et al., 2020), which encodes speech audio using multi-layer convolutional neural networks; the
Speech-Transformer model (Dong et al., 2018), which is a non-recurrent sequence-to-sequence model that relies entirely on
attention mechanisms to learn position-dependent relationships, enabling faster and more efficient training; and (Feng et al.,
2024), which proposes an efficient training strategy using a coarse-to-fine (coarse-to-fine) approach, optimizing the training
process of the Audio Spectrogram Transformer (Audio Spectrogram Transformer, AST), providing a new research paradigm
for building resource-efficient audio classification models. The above research literature offers strong academic reference
value and theoretical foundation for this study.

Network structure and data processing of TFR-G

1) TFR-G network structure

Based on the data transformation process and the initial network architecture of TFR, in order to ensure efficient information
transmission and extraction, this study designs the TFR-G network architecture, as shown in the figure below:

Figure 3-4 TFR-G network structure

2) TFR-G sequence data conversion and processing

As mentioned above, the TFR architecture cannot directly process audio signals and requires data transformation. Based on
the TFR model structure, the audio file data transformation process is as follows:

Figure 3-5 Audio file data form conversion process

After completing the preprocessing of audio signals, this study employs frame division techniques to segment continuous
time-domain signals into discrete analysis units (typically 25 milliseconds in length) to ensure the statistical stability of the
signal within short time windows. To suppress spectral leakage effects caused by frame division operations (Gibbs
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phenomenon), window function weighting is applied to smooth the time-domain signal. The time-domain signal is transformed
into the frequency domain using the Fast Fourier Transform (Fast Fourier Transform, FFT) to obtain complex spectra
containing amplitude and phase information, where the amplitude spectrum represents the core computational result of Short-
Time Fourier Transform (Short-Time Fourier Transform, STFT). Based on the perceptual characteristics of the human auditory
system (sensitive frequency range from 20Hz to 20 kHz), this study constructs a Mel scale triangular filter bank in the
frequency domain to achieve a biomimetic mapping from linear Hz frequencies to nonlinear Mel scales. The amplitude/power
spectrum output by the STFT is processed through the Mel filter bank, extracting energy features of each filter via integration
operations, and logarithmic compression is applied to reduce the dynamic range of these features, thereby enhancing the
sensitivity to low-energy components. Ultimately, a two-dimensional feature matrix representing the time-frequency
characteristics of the signal, known as the Mel spectrum is obtained.
The Mel spectrum is essentially a two-dimensional matrix, structured as (number of time steps, number of Mel bands). It

needs to be serialized, converting the structure of "number of time steps × number of Mel bands" into (number of time steps,
d_model), where d_model is the model dimension of TFR. Assuming the Mel spectrum matrix is � ∈ ℝ�×� ， T =
1000 represents the number of time steps, F = 80 represents the number of Mel bands, and ℝ denotes the real domain. The
matrix element xt, f represents the feature value at time step t and Mel band f, then the element-wise expansion is:
xt, f = Time step t, The value of the f Mel band
Among them, t ϵ {1,2,3...,1000} and f ϵ {1,2,3...,80}.
If the spectrum dimension of the mel is high (such as long time steps and frequencies), it is necessary to refer to the block

strategy of ViT (Vision Transformer) and cut the spectrum into small blocks (such as 16 x16 local regions), and input each
block after flattening it into a vector.

3) Audio embedding and location information coding

After the aforementioned data processing, the audio signal has been represented as a sequence of input vectors for TFR.
Each time step corresponds to a vector. According to the theory of TFR architecture, the vector representing the time step
should be summed with the position code (vector) to form the final input vector embedded with the position information (see
Figure 3-4). The position embedding follows the following formula:

The dimension d_model of positional encoding is consistent with the embedding dimension, allowing for addition
operations between them. There are various implementation methods for positional encoding, including machine learnable
strategy parameters and predefined fixed patterns. In the TFR architecture, positional encoding is achieved through
combinations of sine and cosine functions at different frequencies, a method adopted in this study.

Deep de-entanglement mechanism of audio acoustic features

Decoding refers to the process of decoupling learned latent representations where individual latent units are sensitive only to
a specific independent factor generated by the data, while remaining unchanged for other factors (Higgins et al., 2017). This is
achieved by constraining the KL divergence in Variational AutoEncoders (VAEs), a classic approach in the field of latent
variable decoding, which has since been extended to audio domains. For example, in music mixing, the decoupled latent units
may correspond to specific instruments such as guitar, bass, and drums, or specific acoustic features of an instrument, like the
frequency characteristics of a particular band in EQ.
(Kim & Mnih, 2018) achieved de-interleaving through factorization of latent space, applied to multimodal data (including

audio) research; (Narayanaswamy et al., 2020) combined generative models with self-supervised learning to isolate
independent sound sources from mixed audio, making it possible to adjust parameters of renowned in-house mixing engineers
through deep learning from released music works; (Chiu et al., 2021) improved the reliability of music analysis by de-
interleaving beat and drum features.
The β-VAE architecture introduces the hyperparameter β to regulate the information capacity and independence constraints

of the latent channels. When β> 1, the model achieves a balance between reconstruction accuracy and the independence of
latent factors, thereby learning disentangled representations. Experiments show that β-VAE outperforms baseline methods
such as VAE (β=1) and InfoGAN on datasets like CelebA and 3D chairs, both qualitatively and quantitatively (Higgins et al.,
2017).
This study incorporates the β-VAE architecture as a module processor into the TFR architecture, placed after the

feedforward network FFN in both the encoder and decoder. By encoding and decoding intermediate features through β-VAE,
the model is forced to learn locally decoupled representations, enhancing its ability to decouple deep features. Regularization
techniques are also employed to prevent overfitting, thereby improving the generalization capability of the TFR-GAN
architecture model. Theoretically, the de-interleaving mechanism can accurately extract various acoustic features from mixed
music audio using this architecture model, learning ideal mixing parameters for each instrument in the music, providing a
reference for high-quality multi-track music mixing.
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The implementation path of intelligent mixing in TFR-Gans architecture
Multitrack music mixing involves time alignment, volume balancing, and frequency adjustment of multiple tracks (drums,

bass, vocals, synthesizers, etc.). The core challenge is to model long-term temporal dependencies and cross-track interactions
simultaneously.

Representation of multi-track music and Transformer input adaptation

1）Time-frequency domain feature extraction

The short time Fourier transform (STFT) is performed on each track to extract the amplitude spectrum (Magnitude
Spectrogram) and phase spectrum (Phase), or the Mel spectrum (Mel-Spectrogram) is used as the basic feature to form a multi-
channel 2D tensor (time frame × frequency × channel).

2）Serialization and embedding

The 2D spectrum is expanded into a 1D sequence along the time axis, and each time step contains multi-track spectrum
information of the current frame (such as [num_tracks, freq_bins]). It is embedded into a high-dimensional vector through a
linear projection layer (similar to Patch Embedding in ViT).

3）Location coding enhancement

The introduction of learnable position coding captures spatial relationships between tracks (such as drum and bass rhythm
alignment) and temporal dynamics (such as the rise and fall of vocals).

Mapping of random noise to multi-track mixed signal

1）Conditional noise input

The random noise vector (� ∈ R�� ) is concatenated with the target mixing style label (such as "pop", "electronic"), and the
initial hidden state is generated by MLP as the starting symbol of Transformer decoder (similar to [CLS] token in GPT).

2）Multi-layer decoder structure

Stacked Transformer decoder layers, each containing mask self-attention (to model temporal dependencies within the track)
and cross-attention (to capture track-to-track interactions). For example, when generating a drum track, the model needs to
refer to the rhythm information of the bass to avoid conflicts.

3）Multi-scale output generation

In order to control both the global structure (such as paragraph transition) and local details (such as transient response), a
hierarchical decoding mechanism is designed: the high-level Transformer generates coarse-grained spectrum (low-frequency
energy distribution), and the low-level network refines high-frequency details, and multi-scale features are fused through jump
connection.

4）Spectrum to waveform conversion

The final output of the generator is a multi-track complex spectrum (Magnitude + Phase), which is converted into a time-
domain waveform through inverse STFT (iSTFT) or neural vocoder (such as HiFi-GAN) to complete end-to-end generation.

Conclusion
This paper addresses the technical challenges in the field of intelligent music mixing and proposes a deep feature de-

interleaving model based on the TFR-GAN architecture. By integrating the advantages of Transformer and Generative
Adversarial Networks (GANs), it achieves a theoretical framework for global modeling of multi-track music signals and high-
quality mixing generation. The following are the core innovations and technological breakthroughs:
Technical direction Implementation path and advantages

architectural design

Transformer is used as the generator of GANs to capture the global temporal dependence of audio signals through multi-head

self-attention mechanism, and solve the problems of gradient disappearance and computational efficiency in traditional LSTM

models

Data representation
The mel spectrum transformation and block embedding strategy are adopted to adapt the audio signal into a serialized input that

can be processed by Transformer, and the spatio-temporal relationship modeling is enhanced through position coding

Feature deentanglement The β-VAE module is introduced to constrain the intermediate features, and the model is forced to learn independent acoustic

features (such as instrument separation and frequency band characteristics), so as to improve the interpretability of mixing

https://doi.org/10.71113/JCAC.v1i1.304


JOURNAL OF CONTEMPORARY ART CRITICISM Volume 1 Issue 1 , 2025, 32- 39
ISSN: 3079-7470 | eISSN: 3079-7489 Doi:10.71113/JCAC.v1i1.304

38

parameters

Multi-track interactive modeling
The design of hierarchical decoding mechanism and cross-track attention module is realized to realize the collaborative

optimization of drum, bass, voice and other tracks and avoid spectrum conflict

Table 1 Research innovation and technological breakthroughs Future development and challenges
Future development and challenges
The technical optimization direction is to improve the calculation efficiency
In the existing TFR model, the time complexity of self-attention mechanisms generally remains at the O(n²) level, leading to

a quadratic increase in computation as the input sequence length increases. This computational characteristic is particularly
prominent when processing long audio data, which typically contains thousands to tens of thousands of temporal features,
easily causing significant performance bottlenecks. To overcome this limitation, current research primarily focuses on two
optimization paradigms: one is the Sparse Attention Mechanism (Sparse Attention), which constructs local receptive fields or
predefined attention patterns to effectively eliminate redundant computation items, keeping the complexity in sub-linear range;
the other is the Linear Attention Model (Linear Transformers), which uses kernel function approximation or feature
decomposition techniques to transform traditional Softmax attention into a linearly decomposable form, achieving linear time
complexity. Experimental data shows that the optimized model can achieve a 78% inference speed improvement on the
LibriSpeech long audio dataset while maintaining WER metric fluctuations within 0.3%. As related algorithms continue to be
optimized and architectures innovate, the authors will further optimize the TFR-Gans architecture model and combine it with
empirical research to build an efficient TFR model suitable for ultra-long sequence processing, further enhancing the
performance of intelligent mixing architecture models and providing reliable academic references for high-quality fully
intelligent multi-track music mixing research.

Breakthrough in data dependency
In the training process of intelligent music mixing architecture models, it is usually necessary to rely on multi-track label

datasets that pair dry and wet sound information. However, in practical application scenarios, obtaining such high-quality
datasets often faces severe challenges due to the scarcity of professional recording data. To address the issue of difficult data
collection, this study suggests exploring self-supervised pre-training paradigms (such as contrastive learning mechanisms).
This approach can effectively utilize unlabeled data to achieve adaptive feature representation extraction. Additionally,
whether cross-domain transfer learning strategies can be employed to transfer prior knowledge acquired in adjacent fields like
speech processing, combined with domain-specific adaptation techniques to align acoustic feature distributions, thereby
enhancing the model's generalization ability for the target task.
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